I B.TECH II SEMESTER REGULAR EXAMINATIONS, SEP - 2021
 NETWORK ANALYSIS (ELECTRONICS AND COMMUNICATION ENGINEERING)

Time: 3 Hours

Max. Marks: 70
Note:Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Calculate the current in each branch of the following network.

b) Find the current in each branch of the following network. The star-delta transformation must be utilized in the analysis.

(OR)
2. a) Find the current in each branch of the following network using [7M] nodal analysis.

Page 1 of 4
b) Calculate the voltage across all the resistances of the following network using Mesh analysis.

UNIT-II
3. a) Find the current in the following circuit thus find the power supplied by the source.

b) Calculate the equivalent impedance of the following network across the terminals A-B.

4. a) Find the impedance between terminals a and b in the following circuit.

Page 2 of 4
b) Find the current I_{1} in the following ac circuit.

UNIT-III
5. a) Apply the superposition theorem and find the current in each branch of the following network.

b) Find the Norton's equivalent circuit across the terminal AB.

(OR)
6. a) State and prove the Thevenin's theorem by taking an example. [7M]
b) Find the maximum paper transferred to the load of 5Ω given in [7M] the following network.

7. a) Make the $A B C D$-parameter model of the following network.

Page 3 of 4
b) Find the equivalent impedance of the following network.

(OR)
8. a) Convert the Y-parameters to transmission parameters.
b) Find the Z-parameters of the following network.

UNIT-V

9. a) Explain initial and final (steady state) behaviours of R, L and C for the dc excitation.
b) In the following circuit the switch is moved from a to b at $\mathrm{t}=$

0 . Find $i(t)$ for $\mathrm{t}>0$.

(OR)
10. a) Obtain the voltage across capacitor for $\mathrm{t}>0$ in the first order series RC circuit when the DC voltage V applied at $\mathrm{t}=0$. Assume all initial conditions to be zero.
b) In the following circuit the switch is opened at $t=0$. Determine the expression for $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.

$* * * * *$
Page 4 of 4

